Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam January 2018: Problem 4 Solution

Exercise. Define $D = \{z \in \mathbb{Z} : 2 < |z| < 3\}$. Let f be a holomorphic function over D that is continuous over \overline{D} .

(a) Suppose that $\max_{|z|=2} |f(z)| \leq 2$ and $\max_{|z|=3} |f(z)| \leq 3$. Prove that $|f(z)| \leq |z|$ on D

Solution. Consider the function $\frac{f(z)}{z}$. We are given that $\left|\frac{f(z)}{z}\right| \leq 1$ on δD . Also, since f(z) is holomorphic on D and the only singularity of $\frac{f(z)}{z}$ is at z = 0, it follows that $\frac{f(z)}{z}$ is holomorphic on D. By the Maximum Modulus Principle, since $\frac{f(z)}{z}$ is holomorphic on the connected open set $D \subseteq \mathbb{C}$, $\left|\frac{f(z)}{z}\right|$ attains its maximum on δD Thus, $\left|\frac{f(z)}{z}\right| \leq 1$ for all $z \in D$ $\implies |f(z)| \leq |z|$ on D

(b) Suppose |f(z)| = |z| for |z| = 2 and |z| = 3. Suppose furthermore that f(z) does not have any zeros in D. Prove that $f(z) = e^{i\theta}z$ for some constant $\theta \in [0, 2\pi]$.

Solution.

By the **minimum modulus principle** since $\frac{f(z)}{z}$ is holomorphic in D (a bounded domain), continuous up to the boundary of D, and nonzero at all points, $\left|\frac{f(z)}{z}\right|$ takes its minimum on the boundary of D. $\implies \left|\frac{f(z)}{z}\right| \ge 1$ on DBut we also know that $|f(z)| \le |z|$ by part (a) $\implies |f(z)| = |z|$ on D $\implies f(z) = zg(z)$ for some g(z) such that |g(z)| = 1 on \overline{D} . $g(z) = \frac{f(z)}{z}$ is holomorphic on D and, for any $z_0 \in D$, $|g(z_0)| = 1 \ge |g(z)|$ for all $z \in D$. (i.e. |g(z)| attains its maximum in the compact nonempty set \overline{D} inside the boundary) \implies By the maximum modulus principle, g is constant Thus $g(z) = e^{i\theta}$ for some $\theta \in [0, 2\pi]$ $\implies f(z) = e^{i\theta} z$