Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam
 January 2018: Problem 4 Solution

Exercise. Define $D=\{z \in \mathbb{Z}: 2<|z|<3\}$. Let f be a holomorphic function over D that is continuous over \bar{D}.
(a) Suppose that $\max _{|z|=2}|f(z)| \leq 2$ and $\max _{|z|=3}|f(z)| \leq 3$. Prove that $|f(z)| \leq|z|$ on D

Solution.

Consider the function $\frac{f(z)}{z}$.
We are given that $\left|\frac{f(z)}{z}\right| \leq 1$ on δD.
Also, since $f(z)$ is holomorphic on D and the only singularity of $\frac{f(z)}{z}$ is at $z=0$, it follows that $\frac{f(z)}{z}$ is holomorphic on D.
By the Maximum Modulus Principle, since $\frac{f(z)}{z}$ is holomorphic on the connected open set $D \subseteq \mathbb{C},\left|\frac{f(z)}{z}\right|$ attains its maximum on δD
Thus, $\left|\frac{f(z)}{z}\right| \leq 1$ for all $z \in D$
$\Longrightarrow|f(z)| \leq|z|$ on D
(b) Suppose $|f(z)|=|z|$ for $|z|=2$ and $|z|=3$. Suppose furthermore that $f(z)$ does not have any zeros in D. Prove that $f(z)=e^{i \theta} z$ for some constant $\theta \in[0,2 \pi]$.

Solution.

By the minimum modulus principle since $\frac{f(z)}{z}$ is holomorphic in D (a bounded domain), continuous up to the boundary of D, and nonzero at all points, $\left|\frac{f(z)}{z}\right|$ takes its minimum on the boundary of D.
$\Longrightarrow\left|\frac{f(z)}{z}\right| \geq 1$ on D
But we also know that $|f(z)| \leq|z|$ by part (a)
$\Longrightarrow|f(z)|=|z|$ on D
$\Longrightarrow f(z)=z g(z)$ for some $g(z)$ such that $|g(z)|=1$ on \bar{D}.
$g(z)=\frac{f(z)}{z}$ is holomorphic on D and, for any $z_{0} \in D,\left|g\left(z_{0}\right)\right|=1 \geq|g(z)|$ for all $z \in D$.
(i.e. $|g(z)|$ attains its maximum in the compact nonempty set \bar{D} inside the boundary)
\Longrightarrow By the maximum modulus principle, g is constant
Thus $g(z)=e^{i \theta}$ for some $\theta \in[0,2 \pi]$
$\Longrightarrow f(z)=e^{i \theta} z$

